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The fundamental changes in electronic structure which
accompany coordination of a diatomic molecule to a transition
metal center have been exploited to great effect,1 both in the
activation of inherently inert molecules (such as dinitrogen, N2)2

and in the isolation and characterization of otherwise short-
lived species (e.g., CS, CSe).3,4 Relevance to the biological
conversion of dinitrogen to ammonia led to the isolation of the
first N2 complexes in 1965;5 by contrast, the stronger metal-
ligand bonds formed by the isoelectronic CO molecule
underpin its widespread exploitation in low-oxidation state
transition-metal chemistry (ca. 35 000 structurally characterized
examples).6 Extending this isoelectronic analogy one step
further, diatomic molecules of the type EX (E ) group 13
element, X ) group 17 element), although predicted to be
inherently less stable in the “free” state (due to small HOMO/
LUMO gaps), are thought to offer even more favorable
thermodynamics of binding to metal centers.7–9 However, the
complexes so formed, LnM(EX), are also expected to be
extremely reactive, owing to the build-up of positive charge at
the group 13 element, E.7–10 Superficially, this reflects not only
the inherent disparity in electronegativities between group 13
and group 17 elements, but also the removal of further electron
density from E on coordination to the transition metal. From a
practical perspective, a more pertinent (synthetic) obstacle is
the lack of readily available sources of diatomic EX molecules.
While N2 and CO are stable diatomic gases, BX (X ) F, Cl),
AlX (X ) F, Cl, Br, I), and GaX (X ) Cl, Br, I) are known (as
donor-free species) only under conditions of extreme temper-
ature, with problems stemming from disproportionation or
aggregation inherent at (or close to) room temperature.11–14

Thus, to date, coordinative trapping of a simple diatomic
molecule EXsand investigation of its electronic structureshas
yet to be achieved.10

While synthetic methodologies based on coordination of the
“free” EX molecule seem likely to flounder, we have sought to
exploit an alternative approach, that is abstraction of a halide
anion (X-) from a pre-exisiting metal complex of the type
LnM(EX2). Our choice of the metal/ligand fragment, LnM,
targets a sterically hindered, electron-rich metal center (in this
case [(η5-C5R5)M(PR3)2]+ where M ) a group 8 metal), of a
type which is known to bind both CO and N2 molecules,15,16

and which is likely to offer both steric and electronic protection
of the coordinated EX ligand.17 Herein we report the synthesis

of the compound [Cp*Fe(dppe)(GaI)]+[BArf
4]- [Cp* ) η5-

C5Me5; dppe ) Ph2PCH2CH2PPh2; Arf ) C6H3(CF3)2-3,5],
which features a terminally bound GaI ligand and therefore
represents the first experimental realization of a valence iso-
electronic group 13/group 17 analogue of CO and N2.

The salt metathesis reaction between Cp*Fe(dppe)(GaI2) (1)
(itself prepared from [Cp*Fe(CO)2GaI2]2 and dppe under
photolytic conditions) and the sodium salt of the weakly
coordinating anion [BArf

4]- proceeds quantitatively in fluo-
robenzene solution (as evidenced by 31P NMR monitoring) to
a single phosphorus-containing compound (see Scheme 1).

Similar monitoring of the reaction by 1H NMR in perdeute-
riofluorobenzene is consistent with the formation of a single
organometallic product containing the Cp* ligand. Crystalliza-
tion from a mixture of fluorobenzene and hexanes (ca. 1:10) at
-30 °C leads to the isolation of [Cp*Fe(dppe)(GaI)]+[BArf

4]-

(2) in 35% isolated yield. The constitution of 2 has been
unambiguously established by a combination of multinuclear
(1H, 11B, 13C, 19F, and 31P) NMR, UV-vis and FT-Raman
spectroscopies, positive-ion electrospray mass spectrometry
(including exact mass measurement, isotopic profiling, and
MS-MS fragmentation analysis of the molecular ion peak at
m/z ) 785 (100%)), and by single crystal X-ray diffraction.18,19

The structure of 2 determined crystallographically in the solid
state is shown in Figure 1. Disorder within the structure was
successfully modeled in terms of two cationic species; the major
component (79%) features discrete [Cp*Fe(dppe)(GaI)]+ and
[BArf

4]- ions, with no short secondary interactions involving
the Fe-Ga-I unit (within standard van der Waals contacts).
Key structural features are the essentially linear arrangement
of the iron, gallium, and iodine atoms ∠ Fe-Ga-I ) 171.37(3)o]
typical of a terminally bound diatomic ligand {cf. ∠ Fe-C-O
) 175.8(5)o for [Cp*Fe(dppe)(CO)]+[PF6]-},15 and the ex-
tremely short Fe-Ga [2.2221(6) Å] and Ga-I [2.4436(5) Å]
distances. The metal-gallium distance is among the shortest
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Scheme 1. Synthesis of Cationic Iodogallylene Complex 2 by
Iodide Abstraction
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yet reported involving any transition metal (and the shortest
involving iron); likewise the Ga-I distance is also the shortest
yet reported.6 Structural evidence also points to a soft bending
deformation of the Fe-Ga-I bond, namely, large displacement
ellipsoid amplitude for the iodine atom perpendicular to the
Fe-Ga-I axis. Secondary off-axis electron density has been
modeled as a minor (21%) cationic component featuring a
markedly more bent Fe-Ga-I unit [148.92(5)o] and contacts
between I′ and C(55)-C(58) of one of the [BArf

4]- aromatic
rings which fall within the sum of the van der Waals radii of
iodine and carbon. Large librational amplitudes at oxygen in
related metal–carbonyl complexes are often associated with
analogous Fe-C-O bending motions, and the ready deforma-
tion of the linear Fe-Ga-I fragment in 2 (and a small calculated

energy difference between the linear and bent geometries) is
consistent with the smaller absolute magnitude of directional
covalent contributions to the metal–ligand bond (vide infra).

A contributory factor to the short bond lengths in 2 is the
low coordination number at gallium. Thus, a short Fe-Ga bond
is also observed for two-coordinate (OC)4FeGaAr [Ar )
C6H3(C6H2

iPr3)2–2,6; 2.2248(7) Å],20 while longer bonds are
measured for the three-coordinate precursor 1 [d(Fe-Ga) )
2.322 Å (mean); d(Ga-I) ) 2.630 Å (mean)] and for the four-
coordinate system [Cp*Fe(CO)2GaCl(phen)]+ [d(Fe-Ga) )
2.3047(4) Å; phen ) 1,10-phenanthroline].19,21 Potentially, a
second factor underlying these short bonds is the presence of
off-axis electronic contributions to the bonding, involving
gallium-based orbitals of π symmetry. The contraction of the
Fe-Ga bond on halide abstraction (ca. 4.3% for 2 compared to
1) is markedly less than for analogous boron-containing systems
(typically 9 – 10%),22 for which descriptions incorporating
FedB π bonds have been advanced for the cationic products.

That said, smaller changes in bond length as a function of
bond order are typically found for the heavier main group
elements,23 and the Fe-Ga contraction between 1 and 2 mirrors
that found between double and single bonds involving the
adjacent group 14 element germanium (e.g., 4.7% between
Mn-Ge and MndGe bonds).24 To better understand the
bonding in the unprecedented ligand system present in 2 and
to provide comparison of group 13/17 EX ligands with group
14/16 and group 15/15 counterparts, an in-depth computational

Figure 1. (left) Displacement ellipsoid drawing (50% probability level)
of the major (79%) component of [Cp*Fe(dppe)(GaI)]+[BArf

4]- (2).
Hydrogen atoms are not shown. Selected bond lengths (Å) and angles (deg):
Fe-Ga, 2.2221(6); Ga-I, 2.4436(5); Fe-Ga-I, 171.37(3). (right) Space
filling diagram of the cationic component of 2: (gray) carbon, (white)
hydrogen, (blue) phosphorus, (pink) gallium, (purple) iodine.

Figure 2. Molecular orbital energy level diagram for the model complexes [CpFe(dmpe)(CO)]+ and [CpFe(dmpe)(GaI)]+ showing correlation with the
[CpFe(dmpe)]+ and CO/GaI fragments. Local σ-symmetry interactions involving the LUMO of [CpFe(dmpe)]+ and the HOMO of the CO/GaI ligand are
shown in blue; π-symmetry interactions originating in the HOMO and HOMO-2 of [CpFe(dmpe)]+ and the degenerate pair of LUMOs of CO/GaI are shown
in red.
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investigation of the bonding in 2 and related complexes was
undertaken.

Density functional theory (DFT) analyses of electronic
structure were carried out using the computationally efficient
model systems [CpFe(dmpe)(EX)]+ (EX ) GaI, BF, CO, and
N2; Cp ) η5-C5H5; dmpe ) Me2PCH2CH2PMe2), revealing for
EX ) GaI an essentially linear minimum-energy geometry
(∠ Fe-Ga-I ) 174.4 °) consistent with crystallographic studies.
Moreover, a very shallow potential energy surface is found to
be associated with the Fe-Ga-I bending deformation (∆E <
+3.5 kJ mol-1 for 159 < ϑ < 179°, and ∆E ) +11 kJ mol-1

for ϑ ) 149°).19

From a bonding perspective, a breakdown of the covalent
(orbital) components of the metal–ligand bonds of each of the
four model compounds reveals notable similarities. In each case,
orbital interactions of π symmetry are significant (representing
33 (GaI), 42 (BF), 39 (CO), and 38% (N2) of the total covalent
bonding density).9 Moreover, the fragment correlation diagram
for [CpFe(dmpe)(GaI)]+ (Figure 2) reveals HOMO-5 (E ) –9.55
eV) and HOMO-2/HOMO-1 (E ) -8.34, -7.95 eV) orbitals
consistent with GafFe σ donor and FefGa π back-bonding
interactions, respectively. Despite this, the magnitude of the
covalent (orbital) bonding component for the GaI complex (–236
kJ mol-1) can be put into context by values of -469, -397,
and -262 kJ mol-1 for the corresponding BF, CO, and N2

complexes and by a value of -234 kJ mol-1 for the electrostatic
contribution to the (highly polar) Fe-GaI bond. Presumably,
despite the higher energy of the HOMO for GaI (–6.08 eV cf.
-9.03 eV for CO; see Figure 2) and the greater localization of
the LUMO at the donor atom, the weaker orbital contribution
for GaI reflects (at least in part) the more diffuse nature of the
4s/4p derived orbitals at gallium and less effective interaction
with the fragment orbitals of [CpFe(dmpe)]+.25

Overall metal–ligand interaction energies [∆Eint ) -103
(GaI), –285 (BF), -213 (CO), and –120 kJ mol-1 (N2)]26

reveal significantly weaker binding of the GaI ligand than
BF or CO,7–9 which can consequently be displaced quanti-
tatively from 2 by the addition of CO (at 1 atm pressure) to
give [Cp*Fe(dppe)(CO)]+[BArf

4]-. In the absence of such
reagents, 2 is stable for weeks in fluorobenzene solution,
presumably reflecting (i) effective steric shielding of the
gallium center by the ancillary phosphine and Cp* ligands
(Figure 1); (ii) a net cationic charge which retards the
tendency toward dimerization found in putative charge-neutral
systems;27 and (iii) population of the LUMOs of the GaI
molecule through π overlap with the HOMO and HOMO-2
of the [Cp*Fe(dppe)]+ fragment.
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